- Matrices \rightarrow Multiply them.

$$
(1) \rightarrow\left[\begin{array}{llll}
a_{1} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

$$
\begin{gathered}
a_{1} b_{1}+\cdots+a_{n} b_{n} \\
{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]_{m \times n}\left[\begin{array}{l}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]_{n \times 1}=[]_{m \times 1}}
\end{gathered}
$$

$$
A=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{m}
\end{array}\right] \quad b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

$$
A_{1}, \ldots, A_{m} \in \mathbb{R}^{1 \times n}
$$

$$
A b=\left[\begin{array}{c}
A_{1} b \\
\vdots \\
A_{m} b
\end{array}\right]
$$

$$
\begin{gathered}
A \in \mathbb{R}^{m \times n} B \in \mathbb{R}^{n \times p} \\
B=\left[\begin{array}{lll}
b_{1} & \cdots & b_{p}
\end{array}\right] ; b_{1}, \ldots, b_{p} \in \mathbb{R}^{n \times 1} \\
A B=\left[\begin{array}{ccc}
A b_{1} & \cdots & A b_{p}
\end{array}\right] \in \mathbb{R}^{m \times p} \\
\uparrow \\
\in \mathbb{R}^{m \times 1}
\end{gathered}
$$

$$
A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times n}
$$

We say that B is an inverse of A if

$$
A B=I=B A .
$$

Fact. (Will see later) $\quad A B=I \Rightarrow B A=I$
this was not clear, a priori)
\rightarrow Functions $f, g: x \rightarrow x . \quad\left(x^{\neq \phi}\right.$ is some set.)

$$
\text { If }(f \circ g)(x)=x \quad \forall x \in x,
$$

is it necessary that $(g \circ f)(x)=x \quad \forall x \in x$?

No. Find example.

$$
A x=b \cdot(*) \quad A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n \times 1}, b \in \mathbb{R}^{m \times 1}
$$

If A is upper triangular, it is easy by back - substitution. (Whether consistent or not is abs clear.

Idea: Do operations on both A and b to get something as above.
\rightarrow If $A x_{0}=b$, ie., x_{0} is a particular sol, and $S=\left\{x^{\in \mathbb{R}}: A x=0\right\}$.
Then, all solutions of $(*)$ are precisely of the form $x_{0}+s$ for some $s \in S$.

Idea: Row echelon form (REF)
(i) All zero rows at bottom. (Possibly none.)
(No zero row can be above a nonzero row.) frost to element from left
(2) Pivots should be strictly from left to right as you go from top to bottom.

$$
\left[\begin{array}{ccc}
0 & {[1]} \\
\cdots & \square \\
\cdots & \square & \square \\
0 & \cdots & 0 \\
0 & \cdots & 0
\end{array}\right]
$$

Week 2

Outline:

1. Recall REF. n variables, r pivots $\Rightarrow(n-r)$ free variables
2. $\mathbf{A x}=\mathbf{0}$ has only the zero solution $\Leftrightarrow n=r \leftarrow$ every column has a prot
3. EROs
4. GEM
5. $\mathbf{A} \mathbf{x}=\mathbf{0}$ has only the zero solution \Leftrightarrow any REF of \mathbf{A} has n non-zero rows
6. Inverse
7. $\mathbf{A} \mathbf{x}=\mathbf{0}$ has only the zero solution $\Leftrightarrow \mathbf{A}$ is invertible
8. Let $A, B \in \mathbb{R}^{\wedge}\{n \times n\}$. $\mathbf{A B}=\mathbf{I} \Leftrightarrow \mathbf{B A}=\mathbf{I}$
9. RCF. REF + pivots are $1+$ the entries above the pivots are $0 s$
10. A can be transformed to I via EROs $\Leftrightarrow \mathbf{A}$ is invertible
11. GJM
12. Linear (in)dependence
13. Row rank
14. Given n column vectors, make a matrix with those as columns and find its row rank r.

We know $r \leq n$. The vectors are linearly independent $\Leftrightarrow r=n$.
15. EROs don't change row rank. Thus, \mathbf{A} and $\operatorname{REF}(\mathbf{A})$ have the same row rank.
16. If A^{\prime} is in REF, then row-rank $\left(A^{\prime}\right)=$ number-of-non-zero-rows $\left(A^{\prime}\right)$.
3. EROs \rightarrow Elementary Row operations

Type 1 : Interchange two rows
Type II: Add a scalar multiple of R_{i}
to R_{j} where $i \neq j$.
Type III: Multiplying a row with a non-zero scalar
4. GEM \rightarrow Gauss Elimination Method

Algo to convert a matrix into an REF using EROs.
5. \# non-zero rows of $A^{\prime}=\#$ pivots of A^{\prime} (A^{\prime} is in REF)
5 follows from 2.
6. If $A \in \mathbb{R}^{n \times n}$, then $B \in \mathbb{R}^{n \times n}$ is ap ${ }^{\text {the }}$ inverse of A if $A B=I=B A$.
9. RCF if (1) it is REF
(ii) it has all pivots as 1
(iii) everything above pivot are also 0

$$
\left[\begin{array}{ccc}
\text { 四 } & & \vdots \\
0 & \longrightarrow & 0 \\
\vdots & & \text { 四 } \\
0 & \cdots \\
0 & & \vdots \\
&
\end{array}\right]
$$

RCF is unique. (REF need not be.)
10. A is invertible \Leftrightarrow RCF of A is I
$\Leftrightarrow A$ can be transformed to I via EROs
11. Take $A \in \mathbb{R}^{n \times n}$.

Make the augmented matrix
\{performs EROS to make A into
$\left\{\begin{array}{l}\text { performs its RCF (so some operations on } \\ \text { as well) }\end{array}\right.$

$$
\left[\begin{array}{lll}
A^{\prime} & (B
\end{array}\right]
$$

If A is inv, then $A^{\prime}=I$ and $B=A^{-1}$.
If A is not inv, then $A^{\prime} \neq I$.
II. Linear dependence

$$
\left.\cdot S \subset \mathbb{R}^{n \times 1} \text { (or } \mathbb{R}^{1 \times n}\right)
$$

(possibly infinite)

- S is linearly dependent if there exist (distinct) $v_{1}, \ldots, v_{s} \in S$ and $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{R}$, not all zero such that

$$
\alpha_{1} v_{1}+\cdots+\alpha_{s} v_{s}=0 \underbrace{}_{b_{\text {in }} \mathbb{R}^{n+1}\left(\text { or } \mathbb{R}^{\text {mn }}\right)}
$$

- For example, if $\alpha_{1} \neq 0$ and $n \geqslant 2$, then

$$
v_{1}=-\frac{1}{\alpha_{1}}\left(\alpha_{2} v_{2}+\cdots+\alpha_{5} v_{5}\right) .
$$

- if $0 \in S$, then S is lin. dep. Take $n=1, \quad v_{1}=0, \quad \alpha_{1}=1 \neq 0$.

Then, $\quad 1 \cdot 0=0$.

- If $S=\{v\}$ and $v \neq 0$. Then, S s not lin. dep.
- if $S=\phi$, then S is not lin. dep.
- S is linearly independent if S is not linearly dependent.

13. $\operatorname{row}-\operatorname{rank}(A)=$ maximum no. of lin. indep of A.
if $A=0$, then $\operatorname{row-rank}(A)=0$.
row-rank $\left[\begin{array}{ll}{[1} & 1 \\ 2 & 2\end{array}\right]=1$
this is lin indep
$\left\{\left[\begin{array}{ll}1 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2\end{array}\right]\right\}$ is lin. dep.
14. In general, row-raik $(A)=\operatorname{row}-\operatorname{rank}\left(A^{\prime}\right)$ where A^{\prime} is an REF of A.

Week 4

Outline:

1. Linear transformations
2. Model example
3. $M^{\wedge} E _F(T)$
4. Composite
5. Null space, image space (relate with A, T_A)
6. Eigen(value, vector, space)
7. Characteristic polynomial
8. Algebraic, geometric multiplicity
9. Similarity of square matrices
10. When is $B \sim A$?
11. Diagonalisable, how do we get P ?
12. $\quad V, \quad W \rightarrow$ vector spaces over K

$$
(\mathbb{K}=\mathbb{R} \text { or } \mathbb{C})
$$

A linear transformation from V to W is a function

$$
T: \quad V \rightarrow w
$$

with the following properties:
(i) $T\left(v_{1}+v_{2}\right)=T\left(V_{1}\right)+T\left(v_{2}\right) \quad \forall v_{1}, v_{2} \in V$,
(ii) $T(\alpha v)=\alpha \cdot T(v) \quad \forall \alpha \in \mathbb{K}, \forall v \in V$.

Convergences: (i) $T\left(\underset{j}{\theta_{j}}\right)=0_{i_{\omega}}$
(ii) For all $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{K}$ and $v_{1}, \ldots, v_{s} \in V$:

$$
\begin{aligned}
T\left(\alpha_{1} v_{1}+\cdots+\alpha_{s} v_{s}\right) & =T\left(\alpha_{1} v_{1}\right)+\cdots+T\left(\alpha_{s} v_{s}\right) \\
& =\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{s} T\left(v_{s}\right)
\end{aligned}
$$

2. Let $A \in \mathbb{R}^{m \times n}$. This gives a linear transformation

$$
T_{A}: \mathbb{R}^{n \times 1} \xrightarrow{\text { hives a }} \mathbb{R}^{m \times 1} \text { linear transformation }
$$ defined as

$$
I_{A}(x)=A x
$$

3. $\quad M_{f}^{E}(T)$.

Let $T: V \rightarrow W$ be a lin. transf. Fix ordered bases E of V and F of W.

Say,

$$
\begin{aligned}
& E=\left(v_{1}, \ldots, v_{n}\right) \text { and } \\
& F=\left(w_{1}, \ldots, w_{m}\right) .
\end{aligned}
$$

The matrix $M=M_{F}^{E}(T)$ is defined as:
(i) Compute $T\left(V_{1}\right)^{t^{W}}$ and write it as a lin. combination of f. (con do this since f (This combination is un iq). is a basis of w.)

$$
T\left(v_{1}\right)=a_{11} w_{1}+a_{21} w_{2}+\cdots+a_{m 1} w_{m} .
$$

The foot column of M is $\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right]$.
(ii) Do the same for $T\left(v_{2}\right)$.
$(n) D_{0}$ it for $T\left(v_{n}\right)$.

$$
\begin{array}{r}
M_{\text {codomain }}^{\text {dom }} \\
\text { 4. v. spans } V_{u} \xrightarrow{T}{ }_{w} \xrightarrow{s} u_{u}
\end{array}
$$

T and s are lin. transf.
Note $S \cdot T: V \rightarrow U$ is also linear. (Chic kl)

$$
M_{G}^{E}(S \circ T)=M_{G}^{F}(S) M_{f}^{E}(T) \text {. }
$$

5. $T: V \longrightarrow w \quad$ lin. transf.

$$
W(T):=\{v \in V: T(v)=0\} T N
$$

vector subspaces of V and W

$$
\begin{aligned}
& \sim \mathcal{I}(T):=\{w \in W: \exists v \in V \text { st. } T(v)=w\} \subseteq w \\
&\text { If } \left.\quad \begin{array}{rl}
& =\mathbb{R}^{n \times 1}, \quad w
\end{array}\right)=\mathbb{R}^{m \times 1}, \quad A \in \mathbb{R}^{m \times n}, \text { then } \\
& \mathcal{N}\left(T_{A}\right)=\mathcal{N}(A) \text { and } \\
& I\left(T_{A}\right)=C(A) .
\end{aligned}
$$

6. Let $A \in \mathbb{K}^{m \times n}$.

Suppose $\quad v \in \mathbb{K}^{n \times 1} \backslash\{0\}$ and $\lambda \in K$ s such that

$$
A_{v}=\lambda_{v} .
$$

Then, v is called an eigenvector of A and λ an eigenvalue.

The eigenspace of λ is defined as

$$
\mathcal{N}(A-\lambda I)=\left\{v \in \mathbb{R}^{n \times 1}: A v=\lambda v\right\} .
$$

All eigenvectors along with 0 .
7. Let $P_{A}(t):=\operatorname{det}(A-t I)$.

This is the characteristic polynomial of A.
The. $\quad \lambda \in \mathbb{K}$ is an e-val of $A \Leftrightarrow p_{A}(\lambda)=0$.
8. geometric multiplicity of $\lambda:=\operatorname{dim}(N(A-\lambda I))$
algebraic multiplicity of $\lambda:=$ largest m s.t. $(t-\lambda)^{m}$ is a factor of $P_{A}(t)$.
9. Let $A, B \in \mathbb{K}^{n \times n}$.
$A \sim B \stackrel{\operatorname{dec}^{n}}{\Longleftrightarrow} \exists P \in \mathbb{K}^{n \times n}$ invertible such that

$$
P^{-1} A P=B
$$

Check: \sim is an equivalence relation.
11. $A \in \mathbb{K}^{n \times n}$ is said to be diagonalisable if A is similar to a diagonal matrix.

Proposition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonalizable if and only if there is a basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of \mathbf{A}. In fact,

$$
\begin{aligned}
& \mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}, \text { where } \mathbf{P}, \mathbf{D} \in \mathbb{K}^{n \times n} \text { are of the form } \\
& \mathbf{P}=\left[\mathbf{x}_{1} \cdots\right. \\
& \Longleftrightarrow\left.\mathbf{x}_{n}\right] \text { and } \mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
&\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \text { is a basis for } \mathbb{K}^{n \times 1} \text { and } \\
& \mathbf{A} \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k} \text { for } k=1, \ldots, n .
\end{aligned}
$$

- Diagonalisability
(1) Let $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{K}$ be an eigenvalue of A
- alg-muet of $\lambda=A M(\lambda)=$ largest $m \in \mathbb{m}$ st
$(t-\lambda)^{m}$ divides $P_{A}(t)=\operatorname{det}(A-t I)$
- geo-mult of $\lambda=\operatorname{GM}(\lambda)=$ nullity $(A-\lambda I)$

Note if λ is an e-val, then $G M(\lambda) \geqslant 1$, by def^{n}

- In general, $\operatorname{GM}(\lambda) \leqslant \operatorname{AM}(\lambda)$
(ii) Let $\lambda_{1}, \lambda_{k} \in \mathbb{K}$ be all the eigenvalues of A

Then,
A is chagon'ble $\Leftrightarrow G M\left(\lambda_{1}\right)+\cdot+G M\left(\lambda_{k}\right)=n$
In particular, dragon' ble $\Rightarrow \operatorname{GM}\left(\lambda_{1}\right)=\operatorname{AM}\left(\lambda_{1}\right) \quad \forall 1 \in\{1,, \notin\}$
Corollary If A has n distinct eigenvalues, then A is diagonalisable.
$\left(\right.$ Even if $k<n$, the matrix MAY be dragonabisable Eg $\left.\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)$
(iii) Procedure for checking diagonalsaboility of $A \in \mathbb{K}^{n \times n}$
(I) Compute $P_{A}(t)=\operatorname{det}(A-t I)$
(II) Find all roots $\lambda_{1}, \lambda_{k} \in \mathbb{K}$ of $P_{A}(t)$
(III) Compute $\operatorname{GM}\left(\lambda_{1}\right), G_{M}\left(\lambda_{k}\right)$
$\left[\begin{array}{l}\text { Convert } A-\lambda_{1} I \text { to an } R E F \text { to get rank Use } \\ \text { rank-nully theorem to get nullity }\left(A-\lambda_{1} I\right)=\operatorname{GM}\left(\lambda_{1}\right)\end{array}\right]$

【rank-nullty theorem to get nullity $\left(A-\lambda_{1} I\right)=\operatorname{GM}\left(\lambda_{1}\right)$ 」
(IV) If $\sum_{i=1}^{k} G M\left(\lambda_{1}\right)=n$, then "diagonalisable".
else,
"not diagonalisable"
(iv) Suppose A is diagon'ble, how do we get an invertible $P \in K^{n \times n}$ st. $P^{-1} A P$ is diagonal?

For each λ_{1}, λ_{k} as in (II), compute a basis for $N\left(A-\lambda_{\iota} I\right)$.
\longrightarrow this was the eigenspace of A correap to λ,
$\left[\begin{array}{lll}\text { Again, convent to an REF and calculate the } \\ \text { basic } & \text { solis of }\left(A-\lambda_{1} I\right) x=0\end{array}\right]$

Then, the union of these bases will have n elements, say $v_{1}, v_{n} \in \mathbb{K}^{n \times 1}$ construct $P=\left[V_{1} \quad V_{n}\right] \in \mathbb{K}^{n \times n}$

This is a desired P
$\left(\begin{array}{l}\text { You can have multiple } P_{s} \text { In fact, take } P^{\prime}=\alpha P \\ \\ \\ \text { for } \alpha \in \mathbb{K} \backslash\{0\}\end{array}\right)$

Inner product
(1) $<,>\mathbb{K}^{n \times 1} \times \mathbb{K}^{n \times 1} \longrightarrow \mathbb{K} \quad$ satisfying

$$
\begin{aligned}
\cdot\langle v, v\rangle \geqslant 0 \quad \forall v \in \mathbb{R}^{n \times 1} \quad \text { and } \\
\langle v, v\rangle \geqslant v=0
\end{aligned}
$$

$$
\begin{aligned}
& \text {. }\left\langle u, \alpha v+v^{\prime}\right\rangle=\alpha\langle u, v\rangle+\left\langle u, v^{\prime}\right\rangle \\
& \forall u, r, v^{\prime} \in \mathbb{K}^{n x 1} \text { and } \alpha \in \mathbb{K} \\
& \text {. }\langle u, v\rangle=\overline{\langle v, u\rangle} \\
& \text { If } k=\mathbb{R} \text {, then } \\
& \langle u, v\rangle=\langle v, u\rangle) \\
& \text { - }\|v\|=\sqrt{\langle v, v\rangle}
\end{aligned}
$$

(ii) Projection let $u, v \in \mathbb{K}^{n x}$

Suppose $V \neq 0 \quad$ Then,

$$
P_{v}(u)=\frac{\langle v, u\rangle}{\langle v, v\rangle} v=\frac{\langle v, u\rangle}{\|v\|^{2}} v
$$

Note that this was updated There was onginally an error

$$
\left\langle u-p_{v}(u), v\right\rangle=0
$$

That is, $\left(u-P_{v}(u)\right) \perp v$
(iii) G-S OP

Start with $\left(w_{1}, w_{k}\right)$ where $w_{1}, w_{k} \in \mathbb{k}^{n \times 1}$
Compute

$$
\left.\begin{array}{l}
v_{1}=w_{1} \\
v_{2}=w_{2}-P_{v_{1}}\left(w_{2}\right), \\
v_{3}=w_{3}-P_{v_{2}}\left(w_{3}\right)-P_{v_{1}}\left(v_{3}\right), \\
v_{k}=w_{k}-P_{v_{1}}\left(w_{k}\right)-P_{v_{k-1}}\left(w_{k}\right)
\end{array}\right\} \begin{aligned}
& \text { If some } \\
& v_{1} \\
& \text { is } 0, \\
& \text { ignore }
\end{aligned} \text { the } \begin{aligned}
& P_{v_{1}}\left(w_{0}\right) \\
& \text { term }
\end{aligned}
$$

Then, $\left(V_{1}, V_{k}\right)$ are or the gonal
Moreover, the cumulative span (from the beginning) is maintained,,e_{1},

$$
\operatorname{span}\left\{w_{1}, w_{j}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{1}\right\} \text { for all } \jmath \in\{1, \ldots, k\}
$$

- Application Suppose $\left\{\omega_{1}, \omega_{k}\right\}$ is a basis of some

Subspace $V \subset \mathbb{k}^{n \times 1}$
Then, using GSOP, we can an orthogonal basis for V Further, we can diode by the norm to get an orth NORMAL basis

- Benefit of orthonormal basis?

Suppose $\left(u_{v}, u_{k}\right)$ is an orthoNORMAL basis for V Let $b \in V$ we know that $\exists \alpha_{1}, \alpha_{k} \in \mathbb{k}$ st.

$$
b=\alpha_{1} u_{1}++\alpha_{k} u_{k}
$$

Q How to got α_{n}, α_{k} ?
$\binom{$ In general, need to solve a system of equation }{ NOT very gored }

But here, we have it more easily as $\alpha_{l}=\left\langle u_{i}, b\right\rangle$

Week 7

1. Spectral Theorem
2. Perpendicular complement
3. \oplus
4. Projection
5. Best approximation
6. A matrix $A \in K^{n \times n}$ is called normal if $A A^{*}=A^{*} A$

Seff-adjoint : $\quad A=A^{*}$
Skew self-adjoint:
Unitary:
$A A^{*}=I=A^{*} A$
(these are invertible)
The. (Spectral theorem for normal matrices)
Let $A \in \mathbb{C}^{n \times n}$. Suppose that A normal.
Then, $\exists a$ unitary matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D \in \mathbb{C}^{n \times n}$ st.

$$
\begin{gathered}
U^{-1} A U=D . \\
U^{\prime \prime} A U
\end{gathered}
$$

\rightarrow If $A=A^{*}$, then $D \in \mathbb{R}^{n \times n}$.
(That is, all eigenvalues of A are real, even if A has non-real entries)

$$
\rightarrow \text { If } A=-A^{*} \text {, then } \quad i D \in \mathbb{R}^{n \times n} \text {. }
$$

(That is, all e-vals of A are purely imaginary.)
In particular, we always have an orthogonal (and hence, orthonormal) eigenbasis. The columns of U will form an orth NormAL eigenbasis.
2. Let V be an inner product space and $E \subset V$. (E need not be a subspace.)

$$
E^{\perp}:=\{v \in V:\langle v, x\rangle=0 \text { for all } x \in \in\} \text {. }
$$

(i) E^{\perp} is always a subspace.
(ii) Suppose $Y \subseteq V$ is a sulospace. Then, y^{t} is also a subspace. Moreover, $\quad V=Y \oplus y^{\perp}$.
3. Let V be a vector space. Let $U, W \subseteq V$ be subspaces. We write

$$
V=U \oplus W
$$

if
(i) Every $r \in V$ can be written as
$v=u+w$ for some $u \in U$ and $w \in w$,
(ii) the u and w above are unique (depend only on v).

For example, conoider $V=\mathbb{R}^{2 \times 1}, \quad U=\operatorname{span}\left\{e_{1}\right\}$ and $W=\operatorname{span}\left\{e_{2}\right\}$. Then, $\quad V=U \oplus \omega$.

Suppose $v \in V$. Then, $v=\left[\begin{array}{ll}a & b\end{array}\right]^{\top}$ for some $a, b \in \mathbb{R}$.
(i) $v=a \underset{c}{a e_{1}}+\underset{u}{\prime \prime}+\underset{e_{2}}{\prime \prime}$.

$$
u \in v, \quad \omega \in W .
$$

(ii) Suppose $\exists u^{\prime}$, w^{\prime} sit. $\quad v=u^{\prime}+w^{\prime}$.

Then,

Then, (i) is true but (ii) is not.
Thus, " $V=U \oplus W^{\prime \prime}$ is not true.
4. Suppose V is V space and $y, z \subseteq V$ are subspaces st.

$$
V=y \oplus z
$$

Then, every $v \in V$ can be written

$$
v=y+z \quad \text { for some unique } y \in Y \text { and }
$$

$$
z \in Z .
$$

Define $P: V \longrightarrow Y$ by
$P(v)=y$. (where y is as above.)
(General projection.)
Then P is well -defined and linear.
Moreover, $\quad W(P)=Z$ and $I(P)=Y$.
By rank-nullity,

$$
\operatorname{dim}(v)=\operatorname{dim}_{\uparrow}^{\text {rank }^{2}}(y)+\operatorname{dim}_{\uparrow_{\text {nullity }}(z) .}
$$

$$
\begin{aligned}
& \underset{\sim}{u} u^{\prime}=\omega^{\prime}-\underset{\sim}{\omega} \\
& \therefore u-u^{\prime} \in U n W \text {. But } \quad \text { Un } W=\{0\} \text {. } \\
& \therefore u-u^{\prime}=0=\omega^{\prime}-\omega \text {. } \\
& \therefore u=u^{\prime} \text { \& } \omega=w^{\prime} \text {. } \\
& \rightarrow \quad V=\mathbb{R}^{2 \times 1}, \quad U=\mathbb{R}^{2 \times 1}, \quad W=\operatorname{span}\left\{e_{2}\right\} .
\end{aligned}
$$

then P is called the ortho goral projection onto Y
3. In general, given a vispace V and sulapaces $y_{1}, \ldots, y_{k} \subseteq v$, we writ

$$
V=y_{1} \oplus \cdots \oplus y_{k}
$$

if
(i) Every $v \in V$ can be written as

$$
v=y_{1}+\cdots+y_{k} \quad \text { fr } \quad y_{i} \in Y_{i} \quad(1 \leq i \leq k) ;
$$

(ii) The $y_{i} \in Y_{i}$ above are uniquely determined.

Then, once again, we can define the projection

$$
\begin{aligned}
& P_{i}: V \longrightarrow Y_{i} \text { by } \quad P_{i}(v)=y_{i} \\
&(1 \leq i \leq k)
\end{aligned}
$$

5. Best approximations.

Den. Let $E \subseteq \mathbb{K}^{n \times 1}$ be any subset and $b \in \mathbb{K}^{n \times 1}$. $a \in E$ is called a best approximation of b from E if

$$
\|b-a\| \leq\|b-x\| \quad \text { for } \| l l \in \in
$$

Note: There may be none, one, many, infinitely many bat approximations.

$$
=\left\{x \in \mathbb{R}^{2 \times 1}:\|x\|=1\right\}
$$

Then, every $a \in E$ is a best approximation for $\quad b=0=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$.

Others: try yours elf.
In this case that E is a subspace, the best approximation (exists and is unique) and is given by
$P_{E}(b)$, where P_{E} is the orthogonal
projection onto E.

