10 March 2021 13:30

 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$ We say that B is an interse of A if AB = I = BAFact. (Will see later) AB = I => BA = I this was not clear, a priori.) $\rightarrow F_{\text{unctions}} \quad f, \ g: \ \chi \rightarrow \chi. \qquad (\chi^{\neq \phi} \text{ is some set.})$ $If \quad (f \circ g) \ (\pi) = \chi \quad \forall \ \chi \in \chi,$ is it necessary that (gof) (a) = n & n Ex? No. Find example. $A_x = b. - (x) \qquad A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{n \times n}$ If A is upper triangular, it is easy by back - substitution. (Whether consistent or not is also clear. Idea: Do operations on both A and b to get something as above. \rightarrow If $A_{20} = b$, i.e., 20 is a porticular solf and $S = \{x \in \mathbb{R}^{\mathbb{R}^{N}} | A_{20} = 0\}$. Then, all solutions of (+) are precisely of the form 20 + 5 for some CES. Idea: Row echelon form (REF) (1) All zero rows at bottom. (Possibly none.)

(No zero row can be above a nonzero row.) first to element from left (2) Pirote should be strictly from left to right as you go from top to bottom.

17 March 2021 09:42

	Outline:
	$(1. Recall REF. n variables, r pivots \Rightarrow (n - r) free variables$
(nxo	2. Ax = 0 has only the zero solution ⇔ n = r ← every column has a pivot
ER	4. GFM
	5. Ax = 0 has <i>only</i> the zero solution ⇔ any REF of A has n non-zero rows
nxn S	6. Inverse
AEIR (7. $Ax = 0$ has <i>only</i> the zero solution \Leftrightarrow A is invertible
	8. Let A , B $\in \mathbb{R}^{n \times n}$. AB = I \Leftrightarrow BA = I
	9. RCF. REF + pivots are 1 + the entries above the pivots are us 10. A can be transformed to Lvia EBOs \Leftrightarrow A is invertible
	10. GJM
	12. Linear (in)dependence
	13. Row rank
	14. Given n column vectors, make a matrix with those as columns and find its row rank r.
	We know $r \le n$. The vectors are linearly independent $\Leftrightarrow r = n$.
	16. If A' is in RFF, then row-rank(A') = number-of-non-zero-rows(A')
_	
	3. EKOs - Elementary Row operations
	Type 1: Inter change two rows
	lype II Add a scalar multiple of Ri
	to R; where i = 1.
	lype III. Multiplying a row with a
	non-zero scalar
	4. GEN - Gauss Elimination Method
	No I convert a verbeix it a REF
	Augo to convolu la machita in io da inter
	wing EROS.
	5. # non-zero rows of A' = # pirets of A'
	(A is in REF)
	5 tollows from 2.
	6. If A E R ^{nxn} , then B E R ^{nxh} is an the
	inverse of H if $I+D = L = BH$.

4. RCF if (i) it is REF
(b) it has all pirots as d
(ii) crewything above pirot are also 0

$$\begin{bmatrix} II & \vdots & \vdots \\ \vdots & -iI & i \end{bmatrix}$$
RCF is Unique. (REF ned not be)
is A invertible (B) RCF of A is I
(B) A is invertible (B) RCF of A is I
(C) A is invertible (B) RCF of A is I
(C) A is invertible (B) RCF of A is I
(C) A is invertible (B) RCF of A is I
(C) A is invertible (B) RCF of A is I
(C) A is invertible (B) RCF of A is I
(C) A is invertible (C) RCF of A is I
(C) A is invertible (C) RCF of A is I
(C) A is invertible (C) RCF of A is I
(C) RCF (S) Serve operations on
(C) A is RCF (S) Serve operations on
(C) A is invertible (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is not invertible (C) RCF (C) Serve operations on
(C) A is invertible (C) RCF (C) Serve operations on
(C) A is not invertible (C) RCF (C) Serve operations on
(C) A is not invertible (C) RCF (C) Serve operations on
(C) A is not invertible (C) RCF (C) Serve operations on
(C) A is not invertible (C) RCF (C) Serve operations on
(C) A is not invertible (C) RCF (C) R

• S is linearly dependent if there exist
(distinct)
$$V_1, ..., V_2 \in S$$
 and $V_1, ..., d_2 \in R_2$ not
all zero such that
 $O(V_1 + ... + O_2 V_2 = 0$
 $V_1 = -\frac{1}{2} (\sigma_2 V_2 + ... + \sigma_3 V_3)$.
• For example, if $\sigma_1 \neq 0$ and $n \geq 2$, then
 $V_1 = -\frac{1}{2} (\sigma_2 V_2 + ... + \sigma_3 V_3)$.
• if $0 \in S$, then S is the dep.
Take $n=1$, $V_1 = 0$, $d_1 = 4 \neq 0$.
Then, $1 \cdot 0 = 0$.
• $T_1 S = \{ V_1^3 \text{ and } V \neq 0$. Then, S
is intervely independent if S is not
linearly dependent if S is not
linearly dependent if S is not
linearly dependent.
• β is lime indep. $\{V_1^3 \text{ is } \lim_{n \to \infty} \inf (f_1 \vee f_1 + 0)$.
13. $r_0 \cup - \operatorname{rank}(p) = \operatorname{maximum} v_0$ of lime indep vows
 $-f_1 A = 0$, then $\operatorname{rum} \operatorname{rank}(A) = 0$.
 $\operatorname{rummonk} \begin{bmatrix} V_1 & V_2 \\ V_2 & - \end{bmatrix} = 1$
 $\operatorname{rummonk} \begin{bmatrix} V_1 & V_2 \\ V_2 & - \end{bmatrix}$ is lime indep
 $\{[1 & V_1, [2 & 2]\}$ is lime dep.

15. In general, row-ravik (A) = row-rank (A') Where A' is an REF of A.

31 March 2021 10:47

Outline: 1. Linear transformations 2. Model example 3. M^E_F(T) 4. Composite 5. Null space, image space (relate with A, T A) 6. Eigen(value, vector, space) 7. Characteristic polynomial 8. Algebraic, geometric multiplicity 9. Similarity of square matrices 10. When is $B \sim A$? 11. Diagonalisable, how do we get P? 1. $V, W \rightarrow vector spaces over K$ (K=R or C) A linear transformation from V to W is a function $T: V \longrightarrow W$ with the following properties: (i) $T(V_1 + V_2) = T(V_1) + T(V_2) + V_1, V_2 \in V_1$ (ii) $T(\alpha v) = \alpha T(v)$ $\forall \alpha \in \mathbb{K}, \forall v \in \mathbb{V}.$ (onsequences: (i) T(0) = 0(ii) For all NI,..., NS EK and VI,..., VS EV: $T(\alpha_1v_1 + \cdots + \alpha_s v_s) = T(v_1v_1) + \cdots + T(\alpha_s v_s)$ $= \alpha_1 T(v_1) + \dots + \alpha_s T(v_s).$ 2. Let $A \in \mathbb{R}^{m \times n}$. This gives a linear transformation $T_A : \mathbb{R}^{n \times 1} \longrightarrow \mathbb{R}^{m \times 1}$ defined as

$$I_{K}(x) = Ax$$
3.
$$M_{E}^{E}(T)$$

$$K = 1 \quad \text{for an entry of the entr$$

4.
$$v:$$
 space $V \xrightarrow{T} W \xrightarrow{S} W$
 $f \xrightarrow{V} f \xrightarrow{V} f$
 $f \xrightarrow{V} f \xrightarrow{V} f$
 $f \xrightarrow{V} f \xrightarrow{V} f \xrightarrow{V} f$
 $T \xrightarrow{V} f \xrightarrow{V} F \xrightarrow{V} W \xrightarrow{V} f \xrightarrow{V} \xrightarrow{V} f \xrightarrow{V} \xrightarrow{V} f \xrightarrow{V$

The eigenspace of λ is defined as $\mathcal{N}(A - \lambda I) = \{ v \in \mathbb{R}^{n \times I} : Av = \lambda v \}.$ All eigenvectors along with O. Let $P_A(t) := det (A - tI)$. Э· This is the characteristic polynomial of A. Thm: nElk is an e-val of A (> pa(n) = 0. 8. geometric multiplicity of $\chi := \dim(N(A - \lambda I))$ algebraic multiplicity of $\chi := lorgest$ m s.t. $(t - \lambda)$ is a factor of $\beta_A(t)$. 9. Let A, B EK^{n×n}. $P^{-}AP = B$ Check ~ is an equivalence relation. 11. A C IK^{n×n} is said to be diagonalisable if A is similar to a diagonal matrix.

Proposition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonalizable if and only if there is a basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of \mathbf{A} . In fact,

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}, \text{ where } \mathbf{P}, \mathbf{D} \in \mathbb{K}^{n \times n} \text{ are of the form}$$
$$\mathbf{P} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \text{ and } \mathbf{D} = \text{diag}(\lambda_1, \dots, \lambda_n)$$
$$\iff \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \text{ is a basis for } \mathbb{K}^{n \times 1} \text{ and}$$
$$\mathbf{A}\mathbf{x}_k = \lambda_k \mathbf{x}_k \text{ for } k = 1, \dots, n.$$

07 April 2021 13:30

· Diagonalisals, lity (1) Let $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of A• alg-mult of $\lambda = AM(\lambda) := largest m \in \mathbb{R}$ st $(1 - \lambda)^m$ divide $D(\lambda)$ rget $M \in H$ st $(t - \lambda)^{M}$ divides $P_{A}(t) = det(A-tI)$ • geo-mult of $\lambda = GM(\lambda) = nullity(A - \lambda I)$ Note if λ is an e-val, then $GM(\lambda) \ge 1$, by defⁿ · In general, $Gn(\lambda) \leq Am(\lambda)$ (ii) Let λ_1 , $\lambda_k \in \mathbb{K}$ be all the eigenvalues of A A " dragon'ble \iff $GM(\lambda_1) + \cdot + GM(\lambda_k) = N$ In particular, dragon'ble \implies $GM(\lambda_1) = AM(\lambda_1)$ $\forall i \in \{b, k\}$ (orollary If A has a distinct eigenvalues, then A is dragonalisable. (ii) Procedure for checking diagonalisability of AEK"" (I) (compute $p_A(t) = det (A - tI)$ (I) find all not Di, , Dr EK of Pr(t) $\begin{array}{c} (III) \quad \mbox{ for pute } & \mbox{ for } (\lambda_1), & \mbox{ GM}(\lambda_k) \\ \hline & \mbox{ Convert } & \mbox{ A - } \lambda_1 I \quad \mbox{ to } m \ \mbox{ REF } \ \mbox{ to } m \ \mbox{ det } \ \mbox{ rank } \ \mbox{ Vie } \\ \hline & \mbox{ tonk - null by } \ \mbox{ beorem } \ \mbox{ to } \ \mbox{ get } \ \mbox{ null by } \ \mbox{ (A - } \lambda_1 I) = - \ \mbox{ GM}(\lambda_1) \end{array} \right]$

$$\begin{bmatrix} \operatorname{tout} - \operatorname{rull}_{\mathcal{Y}} & \operatorname{tencen} & \operatorname{to} & \operatorname{get} & \operatorname{rull}_{\mathcal{Y}} & (A - \lambda, I) = -\operatorname{GN}(\lambda) \end{bmatrix}$$

$$(IE) IJ \qquad \stackrel{k}{\longrightarrow} & \operatorname{GN}(\lambda) = n, \quad \operatorname{treen} & \operatorname{diagonalisable}^{1}$$

$$(IE) IJ \qquad \stackrel{k}{\longrightarrow} & \operatorname{GN}(\lambda) = n, \quad \operatorname{treen} & \operatorname{diagonalisable}^{1}$$

$$(IE) IJ \qquad \stackrel{k}{\longrightarrow} & \operatorname{diagonalisable}^{1$$

· Application Suppose 2w, , Wr³ is a basis of some Sulaspace VCk^{n×1} Then, using GSOP, we can an <u>orthogonal</u> basis for V Furthoi, we can divde by the norm to get an <u>ortho NORMAL</u> basis · Benefit of orthonormal bases? Suppose (u, uk) is an orthonormal basis for V Let b EV We know that I di, , or Elk stb= dill + + dk lk Q How to get dy, dk? (In general, need to solve a system of equation NOT very good) But here, we have it more easily as $\alpha_{i} = \langle u_{i}, b \rangle$

21 April 2021 12:48

Spectral Theorem
 Perpendicular complement

- 3. 🕀
- 4. Projection
- 5. Best approximation

1. A matrix A E K^{n×n} is called normal if AA* = A*A. Lo Seef - adjoint $: \qquad A_{t} = A^{t}$ Skew self-adjoint: $A = -A^*$ Unitary: $AA^{*} = I = A^{*}A$ (these are invertible) Thm. (Spectral Theorem for normal matrices) Let $A \in \mathbb{C}^{n \times n}$. Suppose that A is normal. Then, $\exists a$ unitary matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D \in \mathbb{C}^{n \times n}$ s.t . $\bigcup^{-1} A \cup = D.$ U*AV $A = A^{*}$, then $D \in \mathbb{R}^{n \times n}$. ¥ (That is, all eigenvalues of A are real, even if A has non-real entries) $\frac{T_{k}}{(T_{kat} is, all e-vals of A are purely in aginary.)}$

In particular, we always have an orthogonal (and hence, orthonormal) eigenbasis. The columns of U will form an 1rth. NORMAL eigenbasis.

2 Let V be an inner product space and E CV.
(E need not be a subspace.)

$$E^{\perp} := \{ v \in V : \langle v, x \rangle = \sigma \text{ for all } x \in \varepsilon_{3}^{2}.$$

(i) E^{\perp} is always a subspace.
(ii) Suppose V $\in V$ is a subspace. Then, Y^{\perp} is also
a subspace. Moreover, $V = Y \oplus Y^{\perp}.$
3 Let V be a vector space. Let U, $W \subseteq V$ be
subspaces. We write
 $V = U \oplus W$
if
(i) Every $v \in V$ can be written as
 $v = u + w$ for some $u \in U$ and
 $w \in W,$
(ii) the u and w above are unique (depend only on v).
for example, consider $V = R^{2M}$, $U = \text{span}\{\varepsilon_{1}^{2}\}$ and $W = \text{span}\{\varepsilon_{2}^{2}\}$
Then, $V = U \oplus W.$
(i) $V = U \oplus W.$
(ii) $U = 0$.
(i) $V = u \oplus W.$
(ii) $U = u \in V.$ Then, $v = [a, b]^{\perp}$ for some $a, b \in R$
(i) $V = u \oplus V.$
(ii) Suppose $\overline{U} \in V.$ Then, $v = [a, b]^{\perp}$ for some $a, b \in R$
(i) $V = u \oplus V.$
(ii) Suppose $\overline{U} \in V.$ We $W.$
(iv) $W \in V.$ We $W.$
(iii) Suppose $\overline{U} \in U, w \in W.$

$$U - U' = W' - U$$

$$U - U' \in U \cap W$$

$$But \quad (In W = 50^{3}.$$

$$U - U' \in U \cap W$$

$$But \quad (In W = 50^{3}.$$

$$U = U' \notin W = W' = W$$

$$U = U' \# W = W' = W$$

$$U = U' \# W = W' = W = W' = W$$

$$Then, \quad (I) & is true \quad U = W'' = W = V$$

$$Then, \quad (I) & is true \quad U = W'' = W = V$$

$$I = Y \oplus 2.$$

$$Then, \quad over \quad V = V = Y \oplus 2.$$

$$Then, \quad over \quad V = Y \oplus 2.$$

$$Then, \quad over \quad V = Y \oplus 2.$$

$$Then, \quad over \quad V = Y \oplus 2.$$

$$Then, \quad U = Y \oplus 2.$$

then P is called the orthogonal projection onto Y. 3. In general, given a v-space V and subspaces Y1, ..., Y1c S V, we write $V = Y_1 \oplus \cdots \oplus Y_k$ if (i) Every VEV can be written as V= y, +... + yk for y: EY: (1≤i≤k); (i) The y; EY; above are uniquely determined. Then, once again, we can define the projections $P_i: V \longrightarrow Y_i$ by $P_i(v) = y_i$. $(1 \leq i \leq k)$ 5. Best approximations. Defini let E G/K^{n×1} be any subset and b E/K^{n×1}. a E E is called a best approximation of b from E if llb-all ≤ llb-xll for all x ∈€. Note: There may be none, one, many, infinitely many best approximations. 1'

- J $= 2 \times \in \mathbb{R}^{2 \times 1} : \| \times \| = 1$ Then, every $\partial \in E$ is a best approximation for $b = \mathbf{0} = [\mathbf{0} \quad \mathbf{0}]^{\overline{1}}$. Others : try yours elf. In this case that E is a subspace, the best approximation (exists and is onique) and is given by PE(b), where PE is the orthogonal projection onto E.