- 4.3 Find the matrix of the linear transformation $T: \mathbb{R}^{3\times 1} \to \mathbb{R}^{4\times 1}$ defined by $T(\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^\mathsf{T}) := \begin{bmatrix} x_1 + x_2 & x_2 + x_3 & x_3 + x_1 & x_1 + x_2 + x_3 \end{bmatrix}^\mathsf{T}$ with respect to the ordered bases (i) $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ of $\mathbb{R}^{3\times 1}$ and $F = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$ of $\mathbb{R}^{4\times 1}$,
 - (ii) $E' = (\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_3 + \mathbf{e}_1)$ of $\mathbb{R}^{3 \times 1}$ and $F' = (\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4, \mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}_1, \mathbf{e}_4 + \mathbf{e}_1 + \mathbf{e}_2)$ of $\mathbb{R}^{4 \times 1}$, first showing that E' is a basis for $\mathbb{R}^{3 \times 1}$ and F' is a basis for $\mathbb{R}^{4 \times 1}$.

(i)
$$E = (e_1, e_2, e_3)$$
 ; $F = (e_1, e_2, e_3, e_4)$

$$= \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\right) \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}\right)$$

$$T(e_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1e_1 + 0e_2 + 1e_3 + 1e_4$$

$$T(e_3) = 0e_1 + 1e_2 + 1e_3 + 1e_4$$

$$M_{F}^{E}(T) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Create the matrices with columns as the given vectors.

$$Q = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 and $P = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & (& 1 & 1) \end{bmatrix}$.

To show E (resp., F) is a basis, it suffices to show that Q (resp., P) is invertible.

For that, we may use GEM to reduce Q and P to an REF.

Alika: Calculate det (P) and det (Q) and show they are non-zero.

Assuming we have done that.

$$T(e_1 + e_2) = T\left(\begin{bmatrix} 1\\ 0 \end{bmatrix}\right)$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$T(e_{2}+e_{3}) = T\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\\1\\2\end{bmatrix} = 0\begin{bmatrix}1\\1\\0\end{bmatrix} + 1\begin{bmatrix}0\\1\\1\end{bmatrix} + 0\begin{bmatrix}0\\1\\1\end{bmatrix}$$

$$T(e_3+e_1) = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Thus,
$$M_{pi}^{el}(T) = \begin{bmatrix} 0 & 0 & 6 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

31 March 2021 13:15

4.4 Let
$$\mathbf{A} \in \mathbb{R}^{4 \times 4}$$
. Let $\mathbf{P} := \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$. Show that \mathbf{P} is invertible. Find an ordered bases E of $\mathbb{R}^{4 \times 1}$ such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{M}_E^E(T_{\mathbf{A}})$.

Invertibility: Use GEM.

Proposition

Let \mathbf{A} , $\mathbf{B} \in \mathbb{K}^{n \times n}$. Then $\mathbf{A} \sim \mathbf{B}$ if and only if there is an ordered basis E for $\mathbb{K}^{n \times 1}$ such that \mathbf{B} is the matrix of the linear transformation $T_{\mathbf{A}} : \mathbb{K}^{n \times 1} \to \mathbb{K}^{n \times 1}$ with respect to E.

In fact, $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ if and only if the columns of \mathbf{P} form an ordered basis, say E, for $\mathbb{K}^{n\times 1}$ and $\mathbf{B} = \mathbf{M}_E^E(T_{\mathbf{A}})$.

Thus,
$$E = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 1 \\$

4.5 Let $\lambda \in \mathbb{K}$. Find the geometric multiplicity of the eigenvalue λ of each of the following matrices:

$$\mathbf{A} := \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}, \, \mathbf{B} := \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}, \, \mathbf{C} := \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}.$$

Also, find the eigenspace associated with λ in each case.

Recall:
$$geo-mult(\lambda) = dim(W(A - \lambda J))$$

= nullity (A - \lambda J).
(on calculate using $rank-nullity$

(i)
$$A \cdot \lambda I = 0$$

Thus, rank $(0) = 0$ and hence,
nullity $(0) = 3 - 0 - 3$.

Thus, the gos mult is 3.

(ii)
$$B - \lambda I = \begin{bmatrix} 0 & 1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The above is in RCF. ... nullity = 3-1=2.

The point $\frac{1}{\sqrt{1-x^2}}$

(iii)
$$C - \lambda I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Again, in RCF.
 \therefore nullity = $3-2=1$.

Note that the characteristic pdy of all of them is $-\left(t-\gamma\right)^{3}.$ However, the geometric multiplicities are all different. In partialon, no two of them are similar.) B and C are not diagonalisable. In fact,
they are in Jordan form. I shot in course. \[\lambda_1 \] \(\tau_2 \) \(\tau_n \) \(Jordan

Je Jordan

Each J; is square (different sizes)

possibly.) Each J: looks like \[\lambda_i \] \\ \frac{1}{2} \ If k = C, then every matrix is similar to a Tordan matrix.

(Unique up to a permutation of m.)

31 March 2021 10:57

4.6 Let
$$\mathbf{A} := \begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix}$$
. Show that 3 is an eigenvalue of \mathbf{A} , and find all eigenvectors of \mathbf{A} corresponding to it. Also, show that $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^\mathsf{T}$ is an eigenvector of \mathbf{A} , and find the corresponding eigenvalue of \mathbf{A} .

$$A - 3I = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{bmatrix} = :A^{1}$$

15 Need to find all
$$V$$
 s.t. $AV = 3V$ or $AV = 3V$ or $AV = 3V$ or $AV = 3V$

$$\begin{bmatrix} -2 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad = 0.$$

Basic solutions:
$$n_2 = 1$$
, $n_3 = 0$

$$v_1 = \begin{bmatrix} v_2 \\ 1 \end{bmatrix}$$

$$x_2 = 0, \quad \lambda |_3 = 1$$

Thus, the set of all eigenvectors (s:
$$\begin{cases}
\sqrt{2} \\
1
\end{cases}
+ \beta \begin{bmatrix}
1 \\
0 \\
1
\end{cases}$$

$$\begin{cases}
\alpha, \beta \in \mathbb{R}^{2}, \\
0 \\
0
\end{cases}$$

More concisely: (span [v, v2]) \ {0}.

$$= \begin{bmatrix} 0 \\ 6 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

Thus,
$$[0 \ 1 \ 1]^T$$
 is an e-vec with e-val 6.
(Note $[0 \ 1 \ 1]^T \neq 0$.)

4.7 Let $\theta \in (-\pi, \pi]$, $\mathbf{A} := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and $\mathbb{K} = \mathbb{C}$. Show that $\cos \theta \pm i \sin \theta$ are eigenvalues of \mathbf{A} . Find an invertible matrix \mathbf{P} such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is a diagonal matrix, and check your answer.

1) Note
$$p_A(t) = \det (A - t I)$$

$$= \det \left[(\omega s \theta - t) - sin \theta \right]$$

$$= (\omega s \theta - t)^2 + (sin \theta)^2$$

$$= t^2 - (2 (\omega s \theta) t + 1)$$

Now, note that
$$p((os0 + isin0) = (os0 + isin0)^{2} - (2cos0)(cos0 + isin0) + 1$$

$$= [cos^{2}0 - sin^{2}0] + 2isin0 cos0 - [2cos^{2}0] - 2isin0 cos0 + 1$$

$$= -(cos^{2}0 + sin^{2}0) + 1 = 0.$$

Similarly, p (coso -izino) = 0.

Thus, cos 8 ± is in 0 are eigenvalues.

2 Proposition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonalizable if and only if there is a basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of \mathbf{A} . In fact,

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}$$
, where $\mathbf{P}, \mathbf{D} \in \mathbb{K}^{n \times n}$ are of the form $\mathbf{P} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}$ and $\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

2 Proposition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonalizable if and only if there is a basis for $\mathbb{K}^{n\times 1}$ consisting of eigenvectors of **A**. In fact,

$$\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$$
, where $\mathbf{P}, \mathbf{D} \in \mathbb{K}^{n \times n}$ are of the form

$$\mathbf{P} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}$$
 and $\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

$$\iff$$
 $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ is a basis for $\mathbb{K}^{n\times 1}$ and

$$\mathbf{A}\mathbf{x}_k = \lambda_k \mathbf{x}_k$$
 for $k = 1, \dots, n$.

$$A = \begin{bmatrix} 650 & -5in0 \\ 5in0 & 620 \end{bmatrix}$$

Consider
$$X_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix} \neq \begin{bmatrix} 0 \\ b \end{bmatrix}$$

 $AX_1 = \begin{bmatrix} \cos 0 + i\sin 0 \\ \sin 0 - i\cos 0 \end{bmatrix} = \begin{bmatrix} \cos 0 + i\sin 0 \\ -i \end{bmatrix}$

Similarly,
$$n_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}$$
 is an e-vector corresp. to $e^{-i\theta}$.

Thus,
$$P = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$$
 is one such matrix.

$$P^{-1} = \frac{1}{2i} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix}$$

Now,
$$P^{-1}AP = \frac{1}{2i} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} \begin{bmatrix} \omega \Omega & -\sin \Omega \\ \sin \Omega & \cos \Omega \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$$

Week 4 Page 10

$$= \frac{1}{2i} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} \begin{bmatrix} e^{i\theta} & e^{-i\theta} \\ -i & e^{i\theta} \end{bmatrix} \begin{bmatrix} e^{i\theta} & e^{-i\theta} \\ -i & e^{i\theta} \end{bmatrix} \begin{bmatrix} e^{i\theta} & e^{-i\theta} \\ e^{i\theta} \end{bmatrix} \begin{bmatrix} e^{i\theta} & e^{-i\theta} \\ e^{i\theta} \end{bmatrix}$$

$$= \frac{1}{2i} \begin{bmatrix} 2i e^{i\theta} & 0 \\ 0 & 2i e^{-i\theta} \end{bmatrix} \begin{bmatrix} e^{i\theta} & e^{-i\theta} \\ e^{i\theta} \end{bmatrix}$$

$$= \frac{1}{2i} \begin{bmatrix} 2i e^{i\theta} & 0 \\ 0 & 2i e^{-i\theta} \end{bmatrix} \begin{bmatrix} e^{i\theta} & e^{-i\theta} \\ e^{i\theta} \end{bmatrix}$$

$$= \frac{1}{2i} \begin{bmatrix} 2i e^{i\theta} & 0 \\ 0 & 2i e^{-i\theta} \end{bmatrix}$$

$$= \frac{1}{2i} \begin{bmatrix} 2i e^{i\theta} & 0 \\ 0 & 2i e^{-i\theta} \end{bmatrix}$$

$$= \frac{1}{2i} \begin{bmatrix} 2i e^{i\theta} & 0 \\ 0 & 2i e^{-i\theta} \end{bmatrix}$$

4.8 Let $n \geq 2$ and $\mathbf{A} := \begin{bmatrix} 1 & 1 \\ \vdots & \vdots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$, that is, $a_{jk} = 1$ for all $j, k = 1, \dots, n$. Find rank \mathbf{A} and nullity A2Find an eigenvector of A corresponding to a nonzero eigenvalue by inspection3Find two distinct eigenvalues of **A** along with their geometric multiplicities, and find bases for the eigenspaces.

 \bigcirc Show that **A** is diagonalizable, and find an invertible matrix **P** such that $\mathbf{P}^{-1}\mathbf{AP}$ is a diagonal

Thus, rank (A) = 1 and nullity (A) = n-1 > 0.

nullity (A) = nullity (A - 01).

Thus, 0 is an eigenvalue (: $n \ge 2$) and its geo-mult is n-1.

Let $v = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^T \in \mathbb{R}^{n \times l}$. Then Av = nv and $v \neq 0$. Thus, n is an eigenvalue.

(Ex. Show that a 9x9 solved Sudoku has 45 as an

already have 0 and

Bosis of
$$N(A-OI)$$
:
$$B = \begin{cases} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \\ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \\ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{cases}$$

(LöJ (o w, w) L W_{n-1} we know! dim (W(A-n I)) > 1. Claim dim (N(A-nZ)) = 1. Proof. Suppose not let V_1 , $V_2 \in \mathcal{N}(A-nI)$ be lin indep. and distinct.

Then, $Av_1 = nv_1$ and $Av_2 = nv_2$.

Thus, V_1 , $V_2 \notin B$. (Sub) Claim. B' = Bu {V1, V2} is lim. indep. Proof Suppose a,, ..., duti are st. d, W, + ... + dn-1 Wn-1 + dn V, + dn+1 V2 = 0. (+) Multiplying with (A-nI) gives - n (d, w, +... + dn-, Wh-,) + 0 +0 = 0. Since B & lin. indep., we get $\alpha_1 > \cdots = \alpha_{k-1} = 0.$ Put back in (*) and use lin. indep. of $\{v_1, v_2\}$ to get $\alpha_n = \alpha_{n+1} = 0$.
This proves the sub-claim. But |B'| = n+1 and $B' \subset \mathbb{R}^{n\times 1}$. A contradiction. This proves the claim. B -- IL (L) - 1 - 1 S T 2 , basis

Thus, goo-mult (n) = 1 and { []] is a basis.

Questions for Thought

31 March 2021 10:57

1. Show that every SolvED 1 x 9 Sudoku has 45 as eigenvalue.

2. Let $A \in \mathbb{K}^{2\times 2}$ have eigenvalues λ , μ .

(A) Show K if $\lambda \neq \mu$, then $A \sim \begin{bmatrix} \lambda \\ \mu \end{bmatrix}$.

(b) Show that if $\lambda = \mu$, then either $A \sim \begin{bmatrix} \lambda \\ \lambda \end{bmatrix}$ or $A \sim \begin{bmatrix} \lambda \\ \lambda \end{bmatrix}$. Show that $\begin{bmatrix} \lambda \\ \lambda \end{bmatrix} \not\sim \begin{bmatrix} \lambda \\ \lambda \end{bmatrix}$.