2.1 17 March 2021 09:32

2.1 Find the Row Canonical Form of $\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$. $\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 2 & 0
\end{bmatrix}$ $R_2 \mapsto R_3 - R_1$ $\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 1 \\
0 & -1 & 1 \\
\end{bmatrix}$ $R_2 R_3$ $\begin{bmatrix} 1 & 2 & 11 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \leftarrow REF, not RCF$ R2 +> (-1) R2 $\begin{bmatrix}
1 & 2 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}$ R1 1- R1 - 2R2 $\begin{bmatrix} 0 & 3 & -1 \end{bmatrix}$

 $\begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ $R_2 \mapsto R_2 + R_3, \quad R_1 \mapsto R_1 - 3R_3$ $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \rightarrow RCF \checkmark$

2.2

17 March 2021 09:32

2.2 Let $\mathbf{A} := \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$. Find \mathbf{A}^{-1} by Gauss-Jordan method.
$R_2 \mapsto R_2 - R_1, R_3 \longmapsto R_3 - R_1$
$R_3 \mapsto R_3 - R_2$
.'. A is invertible and $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

2.3 An $m \times m$ matrix **E** is called an **elementary matrix** if it is obtained from the identity matrix **I** by an elementary row operation. Write down all elementary matrices.

(i) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. If an elementary row operation transforms \mathbf{A} to \mathbf{A}' , then show that $\mathbf{A}' = \mathbf{E}\mathbf{A}$, where \mathbf{E} is the corresponding elementary matrix.

(ii) Show that every elementary matrix is invertible, and find its inverse.

(iii) Show that a square matrix \mathbf{A} is invertible if and only if it is a product of finitely many elementary matrices.

AU elem matrices. (0) $\overline{Iype I} : Interchange two rows.
 <math display="block">
 \overline{E_{j,j}} = \left(\begin{array}{cccc} 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & &$ (i<j) Eij = [eke] where $e_{ke} = \begin{cases} 1 & j & k = l \neq i \text{ and } k = l \neq j \\ 1 & j & k = j, l = i \text{ or } k = i, l = j \\ 0 & j & o \text{ therw ise} \end{cases}$ Type II : Add a scalar multiple α of R_j to R_i . $(j \neq i)$ i^{th} j^{th} solumn $E_{i,j}(\alpha) = \begin{bmatrix} 1 & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$

entries:
$$e_{KE} = \begin{cases} 1 & j & K = 1 \\ d & j & K = i, l = j \\ 0 & j & otherwise. \end{cases}$$

Type II: Multiply a row with a non-zero scalar a.
 $F_i(\alpha) = \begin{bmatrix} 1 & 1 & j \\ 0 & 1 & 1 & 1 \end{bmatrix}$
 $e_{KE} = \begin{cases} 1 & K = l \neq i \\ 0 & j & K = l \neq i \\ 0 & j & 0 \end{bmatrix}$
 $e_{KE} = \begin{cases} 1 & K = l \neq i \\ 0 & j & K = l \neq i \\ 0 & j & 0 \end{bmatrix}$
(1). Note that $A = B$ iff A and B have the same rows (in some order)
 $f_{it} = [0 \cdots 0 \ 1 \ 0 \cdots 0] \in \mathbb{R}^{1 \times 10}$.
 $F_{im}, e_i A = B \in \mathbb{R} \quad e_i A = e_i B \neq j \neq j \leq 12 \text{ m}.$
To show: $A' = EA$.
Subjuo: $e_K A' = e_K EA$ $\forall i \neq K = m$
 $\cdot Type \ 1 : E = E_{ij}$ (interchange models)
 $e_i A' = i^{th} row of A$
 $= e_i A$
 $= e_i F_{ij} A = e_i EA$

Thun,
$$e:h' = e, \in A$$
.
Similarly $e_j A' = e_j \in A$. (By cyn metry.)
Now, if $k \neq i_j$, then
 $e_k A' = k^{\frac{n}{2}}$ now $e_j A'$
 $= k^{\frac{n}{2}}$ row $e_j A$
 $= k^{\frac{n}{2}}$ row $e_j A$
 $= e_k A = e_k \in i_j A$.
Thus, $e_k A' = e_k \in A \quad \forall \ i \in k \in m$.
 \cdot Type II and III : Exercise.
(ii) To show: \in is invertible.
Verity : Type I. Eij is its own inverse.
Type II. $\in i_j(\alpha)$ is inverse e_j
 $\in i_{j,1}(-\alpha)$.
Type II. $f_{i,j}(\alpha)$ is inverse e_j
 $\in i_{j,2}(-\alpha)$.
(iii) A is invertible
 $(ii) A$ is invertible
 $(ii) A$ is invertible
 $(iii) Shows that$
 $all there are appendentions and
 $(iii) Shows that$$

(of some type!)

2.4

17 March 2021 09:32

Tand S could possibly be infinite. 2.4 Let S and T be subsets of $\mathbb{R}^{n \times 1}$ such that $S \subset T$. Show that if S is linearly dependent then so is T, and if T is linearly independent then so is S. Does the converse hold? (i) S linearly dep => T linearly dep. Proof. Since S is lin. dep., JV,,..., Vs ES and a1,..., as ER not all zero s.t. $d_1 \vee + \cdots + d_s \vee s = \mathbf{0}.$ Since $S \subset T$, each $V_i \in T$. Thus, the above shows that I is lin dep. T is linearly independent \Rightarrow S is linearly in dependent (ii) (ii) is the contrapositive of (i). Proof 囙 Statement (I): $P \Rightarrow Q$ Contrapositive (II): 7Q => 7P (I) is true (I) is true (iii) Is converse true? Converse: S independent \Rightarrow T in dependent <u>Ans.</u> No. (Counter) Example $O S = \phi$ $T = \{0\} \subseteq \mathbb{R}^{n \times 1}$

2.5 17 March 2021 09:32

2.5 Are the following sets linearly independent? $(i) \ \left\{ \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \right\} \subset \mathbb{R}^{1 \times 3},$ (ii) $\{ \begin{bmatrix} 1 & 9 & 9 & 8 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 & 8 \end{bmatrix} \} \subset \mathbb{R}^{1 \times 4},$ (iii) $\{ \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 3 & -5 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^{\mathsf{T}} \} \subset \mathbb{R}^{3 \times 1}.$ If we have in vectors in R^{1×h} with (i) No. m>n, then they are lin. dep. Here, m = 4, n = 3. Put them in a metrix with the vectors as (ī) columns. 2 2 9 0 0 9 0 0 8 3 5 $R_3 \mapsto R_3 - R_2$ R367 Ry 22⁻ 900 835 0.

$$R_{2} \mapsto R_{2} - 9R_{1}$$

$$R_{3} \mapsto R_{3} - 9R_{2}$$

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & -18 & -11 \\ 0 & 0 & 0 \end{bmatrix}$$

$$R_{2} \mapsto R_{3} - (\frac{13}{18})R_{2}$$

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & -18 & -18 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
Four rank = 3 = # al vectors.
Thus, the vectors are linearly independent.

$$(in) \begin{bmatrix} 1 & 3 & 1 \\ -1 & -5 & -2 \\ 0 & 2 & 1 \end{bmatrix}$$

$$R_{2} \mapsto R_{2} + R_{1}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix}$$

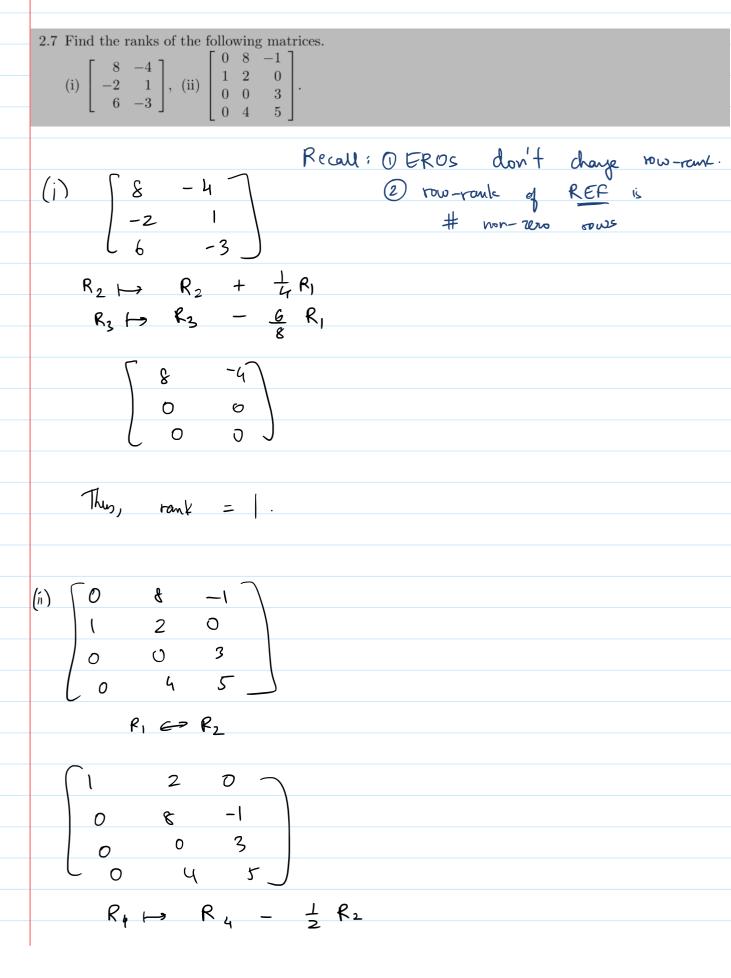
$$R_{3} \mapsto R_{3} + R_{5}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -2 & -1 \\ 0 & 0 \end{bmatrix}$$

Thuy, row-ronk = 2 < # of vectors. DEPendent

2.6 17 March 2021 09:32

2.6 Given a set of s linearly independent row vectors $\{\mathbf{a}_1, \ldots, \mathbf{a}_i, \ldots, \mathbf{a}_j, \ldots, \mathbf{a}_s\}$ in $\mathbb{R}^{1 \times n}$ and $\alpha \in \mathbb{R}$, show that the set $\{\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_i + \alpha \mathbf{a}_j, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_j, \ldots, \mathbf{a}_s\}$ is linearly independent. i + j is an assumption Suppose di, dz,..., ds ER are such that من هن ر $d_1 a_1 + \cdots + d_{i-1} a_{i-1} + a_i (a_i + da_i) + \alpha_{i+1} a_{i+1} + \cdots + \alpha_s a_s = 0$ Want: To show that each d_K = O. (That is, it is forced ar =0) $d_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_{i-1} a_{i-1} + \alpha_i a_i + \alpha_{i+1} a_{i+1}$ +... + $(\alpha_i \alpha + \alpha_j) \alpha_j^{i} + \cdots + \alpha_s \alpha_s = 0$. Since S is linearly in dependent, $\alpha_1 = \alpha_2 = \cdots = \alpha_{j-1} = \alpha_i \alpha + \alpha_j = \alpha_{j+1} = \cdots = \alpha_s = 0.$ Thus, $\alpha_{k} = 0$ for all $k \neq j$. Since $\alpha_i \alpha + \alpha_j = 0$ and $\alpha_i = 0$, we get $\alpha_j = 0$ as well. Thus, $X_{k} = 0$ for all k, as desired.



$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 8 & -1 \\ 0 & 0 & 3 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$R_{4} \mapsto R_{5} - \left(\frac{1!/2}{3}\right) R_{3}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 8 & -1 \\ 0 & 0 & 8 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow R\ell F$$

$$\therefore nw^{-rack} = 3$$