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1 Fields

1.1 Axioms

Let F be a set and let +, · be binary operations on F.
That is, +, · : F× F→ F are functions from F× F to F.
For the sake of better notation, we will write a + b instead of +(a, b) for a, b ∈ F. Similarly, we
will write a · b instead of ·(a, b). In fact, later on, we will even drop the · and simply write ab
instead of a · b.

Now, we say that (F,+, ·) is a field if the following axioms (properties) hold:

(A1) a+ b = b+ a for all a, b ∈ F.

(A2) a+ (b+ c) = (a+ b) + c for all a, b ∈ F.

(A3) ∃0 ∈ F such that a+ 0 = a = 0 + a for all a ∈ F.

(A4) For every a ∈ F, there exists b ∈ F such that a+ b = 0 = b+ a.

(A5) a · b = b · a for all a, b ∈ F.

(A6) a · (b · c) = (a · b) · c for all a, b, c ∈ F.

(A7) ∃1 ∈ F such that a · 1 = a = 1 · a for all a ∈ F.

(A8) For every a ∈ F \ {0}, there exists b ∈ F such that a · b = 1 = b · a.

(A9) a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a for all a, b, c ∈ F.

(A10) 1 6= 0.

Notation abuse: If it is clear from context, one often writes F is a field instead of (F,+, ·).
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1.2 Remarks

I have given the definition of a commutative field. Some books don’t require commutativity of
multiplication (A5) to be a part of the axioms. However, we shall not go with that definition.

As you may have observed, some of the statements contain redundant information. For example,
I could’ve simply written a + 0 = a instead of a + 0 = a = 0 + a, for the last part would’ve
followed from (A1). You are right in believing so. Perhaps someday you will realise why I had
specifically written it in this case (even though it would’ve been perfectly correct without).
Before getting into more explanation, one can observe that (R,+, ·) is a field. (Assuming that
+ and · are defined in the usual sense.)
In fact, I might even stretch the truth enough to describe a field to be something which “behaves”
like R. Indeed, for the sake of intuition, this is a nice starting point.

Now, if you see the axioms, it really is telling that (F,+, ·) should have some sort of properties
that we have seen R having. To name them, addition and multiplication should be additive as
well as commutative. On top of that, both the operations must have their “identities”, that is,
an element that “does nothing” to the other element when operated together. After that, we
also demand “inverses”. Note that here too, we only demand multiplicative inverses of non-zero
elements to exist, just like what we saw in R. To finally connect · and +, we demand that ·
distributed over +.
Note that without this axiom, the two operations were more or less disconnected. (But not
exactly. We demanded every a 6= 0 to have a multiplicative inverse, where 0 was the additive
identity.)

The last axiom, as silly as it may seem, is there simply to avoid the pathological example of a
one-element field. (What do I mean by this?)

Lastly, note that I did not demand that the identities or inverses must be unique, to begin with.
That is, just from (A3) alone, I cannot conclude that if a+0 = a = 0′+ a for every a ∈ F, then
0 = 0′. However, in the case of R, we do know that that is true.
In fact, nicely enough, it is true in general and can be proven using just (A2) and (A3). (Check!)
Similarly, it can shown that the b described in (A4) is indeed unique using just (A2) - (A4).
(Check!)
Analogous results also hold for (A7) and (A8).

Thus, keeping in mind the above results, we introduce the following notations:
For any a ∈ F, −a denotes the additive inverse of a, that is, the unique element such that
a+ (−a) = 0.
For any a ∈ F\{0}, a−1 denotes the multiplicative inverse of a, that is, the unique element such
that a · a−1 = 1.

1.3 Examples

Let us now look at some examples, old and new.
As noted earlier, (R,+, ·) is a field with the usual + and ·.
In fact, so is (Q,+, ·).
On the other hand, not everything we know is a field. For example, (N,+, ·) is not and neither
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is (Z,+, ·). (Why?)
It doesn’t make much sense to talk about (R \ Q,+, ·) being a field since + and · aren’t even
binary operations on R \ Q. (The sum of two irrationals need not be irrational and same for
multiplication.)
One more example of a field you must’ve seen already is (C,+, ·).
Note that if you define multiplication on R2 as (a, b) · (c, d) = (ab, cd), it does not form a field
under the usual addition. One can observe that (0, 1) is a non-zero element (which, in this case,
is (0, 0)) but it does not have a multiplicative inverse.
Does the set all of 2 × 2 matrices with real entries form a field, under the usual addition and
multiplication?

We also have some examples of finite fields. For n ∈ N\{1}, let us define Zn = {0, 1, . . . , n−1}
and define addition and multiplication modulo n.
For example, if n = 3, then 2 + 2 = 1 ∈ Z3 and 2× 2 = 1 ∈ Z3.
Now, a natural question to ask is whether (Zn,+, ·) always a field?
The answer is no. That is, it is not always a field.
For example, Z4 is not a field. One can verify that 2 ∈ Z4 has no multiplicative inverse.
On the other hand, Z3 indeed is a field. This can be verified by making the multiplication and
addition table and manually checking all the (finitely many) combinations.
In fact, it is easy to show that all axioms except (A8) always hold for any n. Thus, it is only the
existence of multiplicative inverses that one needs to check. ((A10) holds as n > 1.)

The next natural question is the following - For what values of n is Zn a field?
Before continuing, the reader is encouraged to answer this themselves.
This question has a nice answer - Zn is a field if and only if n is a prime.
To prove both the directions, you would have to show the following:

1. If n is not a prime, then there exists some non-zero element a ∈ Zn such that a has no
multiplicative inverse.

2. If n is a prime, then every non-zero element a ∈ Zn has a multiplicative inverse.

The above is not too tough and I encourage the reader to prove this.

The next question that one could ask is - Do all finite fields have a prime cardinality? The answer
is - no.
As an example, consider the four element set {0, 1, x, x + 1}. Consider the addition and multi-
plications of elements as addition and multiplication of polynomials with the following rules: x2

is replaced with x+ 1. 2 is replaced with 0.
To illustrate the nontrivial addition and multiplications, we have:
x+ (x+ 1) = 1, x(x+ 1) = 1, 1 + (x+ 1) = x.
The sum (resp. product) of 0 (resp. 1) and any element gives the same element. The product
of 0 with any element gives 0.
It can be verified that this too is a field.

As before, the next natural question would be - Precisely what cardinalities can a finite field have?
We certainly know that it can be a prime number. The answer is - once again - quite nice.

Theorem 1. If F is a finite field, then |F| = pn for some prime p and n ∈ N.
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Proof. The proof is trivial and is left as an exercise to the reader.

Actually, the proof isn’t trivial and requires some more algebraic knowledge and we shall not get
into it.

1.4 Exercises

These are some (fun!) exercises that you can try. These will illustrate that some familiar properties
of R do hold in general as well.
For the following questions, assume that (F,+, ·) be a field. Show that the following holds:

1. For all a, b, c ∈ F, a+ b = a+ c implies b = c.
2. For all a, b, c ∈ F and a 6= 0, a · b = a · c implies b = c.
3. For all a ∈ F, a · 0 = 0.
4. If for any a, b ∈ F, a · b = 0 then a = 0 or b = 0. (Note that this would fail for Zn if n is

not a prime.)
5. For all a ∈ F,−a = (−1) · a.
6. For all a, b ∈ F \ {0}, (a · b)−1 = a−1 · b−1.

Note that we observed earlier that Zn is not a field if n isn’t a prime. This was due to the
fact that some nonzero elements may not have a multiplicative inverse. Towards this direction,
characterise all elements of Zn which do have a multiplicative inverse.

2 Vector spaces

2.1 Axioms

As before, we start with the definition of what a vector space is.
Let V be a set and F a field. Let + : V ×V → V be a binary operation on V and · : F×V → V
be a function.
Note that this is not a binary operation on either V or F.
We say that (V,+, ·) is a vector space over F if the following axioms (properties) hold.

(A1) For all u, v ∈ V : u+ v = v + u.

(A2) For all u, v, w ∈ V : u+ (v + w) = (u+ v) + w.

(A3) There exists 0 ∈ V such that for all v ∈ V : v + 0 = v = 0 + v.

(A4) For every v ∈ V , there exists w ∈ V such that v + w = 0 = w + v.

(A5) For all a ∈ F and all u, v ∈ V : a · (u+ v) = a · u+ a · v.

(A6) For all a, b ∈ F and all v ∈ V : (a+ b) · v = a · v + b · v.

(A7) For all a, b ∈ F and all v ∈ V : (ab) · v = a · (b · v).

(A8) For all v ∈ V : 1 · v = v.
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Note that as before, I have used u+ v to denote +(u, v) for elements u, v ∈ V.
Also note that I have used the symbol + to denote both the vector space addition as well as the
field addition. This is abuse of notation but it is clear from context as to what is meant.
As before, we usually say that V is a vector space over F when it is clear what the operations
are.

Also, the elements of the vector space are called vectors, whereas the elements of the field are
called scalars.
In this course (MA 106), the scalars you will see will either be real numbers or complex numbers.
The function + (defined on V × V ) is also called the vector addition and · (defined on F× V )
is called the scalar multiplication.

2.2 Examples

Let us first consider the field to be F = R.
The most familiar examples of vector spaces are R2, R3, et cetera.
You can verify that all the eight axioms do indeed hold with the vector addition and scalar
multiplication defined in the usual sense.

In fact given any field F, there is a natural way to make Fn a vector space using the same idea.
(How?)
What may be more surprising is that R is in fact a vector space over R itself!
In fact, in general, any field can be regarded as a vector space over itself by just considering the
vector addition to be the same as field addition and the same for scalar multiplication.

Here is something perhaps even more interesting - recall that Q is a field that sits inside R.
We can also regard R as a vector space over Q. Define the vector addition to just be the standard
addition of real numbers and scalar multiplication to be the standard multiplication. Note that
you only need to define the product of a rational number and a real number. The fact that you
can multiply any two real numbers isn’t even required.
How would you generalise this? (Note that in this case, we didn’t just use the fact that Q ⊂ R
but also that the addition and multiplication of Q as a field “agree” with that of R. You may
want to look up the definition of a “subfield” to understand this better.)

2.3 Exercises

1. Show that the identity element 0 of a vector space is unique.
2. Show that the additive inverse of every element in a vector space is unique.
3. Let V be a vector space over F.

Show that 0 · v = 0 for every v ∈ V.
(It should be clear that 0 ∈ F and 0 ∈ V.)

4. Let V be a vector space over F.
Let α ∈ F and v ∈ V \ {0}.
Show that if α · v = 0, then α = 0.

5. Let V be a vector space over F.
Let α ∈ F \ {0} and v ∈ V.
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Show that if α · v = 0, then v = 0.
6. Determine a subset of R2 which is not a vector space under the usual addition and scalar

multiplication.
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