$\left(\right.$ Extra) ${ }^{2}$ Questions for MA 106

Aryaman Maithani

Semester: Spring 2021
Latest update: 2021-03-29 21:50:29+05:30

These are questions that came out of some discussions.

Notations

1. \mathbb{F} denotes an arbitrary field. You may read this to get an introduction to fields. Or may assume that $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. (Although your answers then may not work for a general field.)
2. Given a linear transformation $T, \mathcal{N}(T)$ denotes the null space of T.
3. A nonempty subset $J \subset \mathbb{F}^{n \times n}$ is said to be a two-sided ideal if it has the following properties:
(a) (Closed under addition) For all $A, B \in J$, we have $A+B \in J$,
(b) (Absorption) For all $A \in J$ and $C \in \mathbb{F}^{n \times n}$, we have $A C, C A \in J$.

Show that the (two-sided) ideals of $\mathbb{F}^{n \times n}$ are precisely $\{O\}$ and $\mathbb{F}^{n \times n}$.
2. Let $A \in \mathbb{F}^{n \times n}$ be such that $A y=y$ for all $y \in \mathbb{F}^{n \times 1}$. Show that $A=I$.

HIDDEN:
3. Suppose $A \in \mathbb{R}^{2 \times 2}$ is such that $x^{\top} A x=0$ for all $x \in \mathbb{R}^{2 \times 1}$. Is it necessary that $A=O$? HIDDEN:
4. Let $P \in \mathbb{R}^{n \times n}$ be invertible and let $A=P^{\top} P$.

Show that if $x \in \mathbb{R}^{n \times 1}$, then $x^{\top} A x=0 \Longleftrightarrow x=0$.
5. Let $A \in \mathbb{F}^{n \times n}$ be arbitrary. Show that
(a) A can be written as a sum of two invertible matrices, and
(b) A can be written as a sum of two non-invertible matrices.
6. Can every matrix $A \in \mathbb{F}^{n \times n}$ be written as a product $L U$ where $L, U \in \mathbb{F}^{n \times n}$ are lower and upper triangular, respectively?

HIDDEN:

7. Let V and W be finite dimensional vector spaces over \mathbb{F}. Let $T: V \rightarrow W$ be a linear transformation and let $B=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of $\mathcal{N}(T)$. Extend B to a basis $B^{\prime}=$ $B \cup\left\{v_{k+1}, \ldots, v_{n}\right\}$ of V. Show that $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of range (or image) of T. What can you say about the dimensions involved? Does this seem familiar?
8. Let V and W be finite dimensional vector spaces over \mathbb{F}. Let $T: V \rightarrow W$ be a linear transformation and let $B=\left(v_{1}, \ldots, v_{k}\right)$ be an ordered basis of $\mathcal{N}(T)$. Extend B to an ordered basis $B^{\prime}=\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right)$ of V. Fix any ordered basis C of W. What can you say about the first k columns of $M_{B^{\prime}}^{C}(T)$? The last $n-k$?
9. Let V be a finite dimensional vector spaces over \mathbb{F} and $T: V \rightarrow V$ a linear transformation. Show that there exist ordered bases B and C of T such that the matrix $M_{B}^{C}(T)$ is diagonal with entries $1, \ldots, 1,0, \ldots, 0$.
