$(Extra)^2$ Questions for MA 106

Aryaman Maithani

Semester: Spring 2021 Latest update: 2021-03-29 21:50:29+05:30

These are questions that came out of some discussions. **Notations**

- 1. \mathbb{F} denotes an arbitrary field. You may read this to get an introduction to fields. Or may assume that $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . (Although your answers then may not work for a general field.)
- 2. Given a linear transformation T, $\mathcal{N}(T)$ denotes the null space of T.
- 1. A **nonempty** subset $J \subset \mathbb{F}^{n \times n}$ is said to be a *two-sided ideal* if it has the following properties:
 - (a) (Closed under addition) For all $A, B \in J$, we have $A + B \in J$,
 - (b) (Absorption) For all $A \in J$ and $C \in \mathbb{F}^{n \times n}$, we have $AC, CA \in J$.

Show that the (two-sided) ideals of $\mathbb{F}^{n \times n}$ are precisely $\{O\}$ and $\mathbb{F}^{n \times n}$.

- 2. Let $A \in \mathbb{F}^{n \times n}$ be such that Ay = y for all $y \in \mathbb{F}^{n \times 1}$. Show that A = I. **HIDDEN:** Consider $y = e_k$ for $k \in \{1, \dots, n\}$.
- 3. Suppose $A \in \mathbb{R}^{2 \times 2}$ is such that $x^{\top}Ax = 0$ for all $x \in \mathbb{R}^{2 \times 1}$. Is it necessary that A = O? **HIDDEN:** No. Interpret $x^{\top}Ax$ as $\langle Ax, x \rangle$.
- 4. Let $P \in \mathbb{R}^{n \times n}$ be invertible and let $A = P^{\top}P$. Show that if $x \in \mathbb{R}^{n \times 1}$, then $x^{\top}Ax = 0 \iff x = 0$.
- 5. Let $A \in \mathbb{F}^{n \times n}$ be arbitrary. Show that
 - (a) A can be written as a sum of two invertible matrices, and
 - (b) A can be written as a sum of two non-invertible matrices.
- 6. Can every matrix A ∈ ℝ^{n×n} be written as a product LU where L, U ∈ ℝ^{n×n} are lower and upper triangular, respectively?
 HIDDEN: No. Try to find a counterexample for n = 2.
- 7. Let V and W be finite dimensional vector spaces over \mathbb{F} . Let $T : V \to W$ be a linear transformation and let $B = \{v_1, \ldots, v_k\}$ be a basis of $\mathcal{N}(T)$. Extend B to a basis $B' = B \cup \{v_{k+1}, \ldots, v_n\}$ of V. Show that $\{T(v_{k+1}), \ldots, T(v_n)\}$ is a basis of range (or image) of T. What can you say about the dimensions involved? Does this seem familiar?

- 8. Let V and W be finite dimensional vector spaces over \mathbb{F} . Let $T : V \to W$ be a linear transformation and let $B = (v_1, \ldots, v_k)$ be an ordered basis of $\mathcal{N}(T)$. Extend B to an ordered basis $B' = (v_1, \ldots, v_k, v_{k+1}, \ldots, v_n)$ of V. Fix any ordered basis C of W. What can you say about the first k columns of $M_{B'}^C(T)$? The last n k?
- 9. Let V be a finite dimensional vector spaces over \mathbb{F} and $T: V \to V$ a linear transformation. Show that there exist ordered bases B and C of T such that the matrix $M_B^C(T)$ is diagonal with entries $1, \ldots, 1, 0, \ldots, 0$.